A Comprehensive and Flexible Approach to # AN(C)OVA at the Group Level # Gang Chen, Ziad Saad, Robert Cox Scientific and Statistical Computing Core NIMH & NINDS / NIH / DHHS / Bethesda MD USA Contact: gangchen@mail.nih.gov http://afni.nimh.nih.gov # Demo Example: 2 × 3 Mixed ANCOVA ### - o Factor A (Group): 2 levels (patient and control) - o Factor B (Condition): 3 levels (pos, neg, neu) - o Factor S (Subject): 15 ASD children and 15 healthy controls - Covariate: Age #### Piecemeal t-tests - o Group comparison + age effect - o Pairwise comparisons among three conditions - Effects that cannot be analyzed - Main effect of Condition - o Interaction between Group and Condition - Age effect across three conditions # ANOVA through sums of squares o Age cannot be modeled $$\begin{split} F_{(a-1,a(n-1))}(A) &= \frac{MSA}{MSS(A)}, \\ F_{(b-1,a(b-1)(n-1))}(B) &= \frac{MSB}{MSE}, \\ F_{((a-1)(b-1),a(b-1)(n-1))}(AB) &= \frac{MSAB}{MSE} \end{split}$$ $$\begin{split} MSA &= \frac{SSA}{a-1} = \frac{1}{a-1}(\frac{1}{bn}\sum_{j=1}^{a}Y_{.j}^{2} - \frac{1}{abn}Y_{...}^{2}), \\ MSB &= \frac{SSB}{b-1} = \frac{1}{b-1}(\frac{1}{an}\sum_{k=1}^{b}Y_{..k}^{2} - \frac{1}{abn}Y_{...}^{2}), \\ MSAB &= \frac{SSAB}{(a-1)(b-1)} = \frac{1}{(a-1)(b-1)}(\frac{1}{n}\sum_{j=1}^{a}\sum_{k=1}^{b}Y_{.jk} - \frac{1}{bn}\sum_{j=1}^{a}Y_{.j.}^{2} - \frac{1}{an}\sum_{k=1}^{b}Y_{...k}^{2} + \frac{1}{abn}Y_{...}^{2}), \\ MSS(A) &= \frac{SSS(A)}{a(n-1)} = \frac{1}{a(n-1)}(\frac{1}{b}\sum_{i=1}^{n}\sum_{j=1}^{a}Y_{ij}^{2} - \frac{1}{bn}\sum_{j=1}^{a}Y_{.j.}^{2}), \\ MSE &= \frac{1}{a(b-1)(n-1)}(\sum_{i=1}^{n}\sum_{k=1}^{a}\sum_{i=1}^{b}Y_{ijk}^{2} - \frac{1}{n}\sum_{i=1}^{a}\sum_{k=1}^{b}Y_{.jk} - \frac{1}{b}\sum_{i=1}^{n}\sum_{k=1}^{a}Y_{ij}^{2} + \frac{1}{bn}\sum_{i=1}^{a}Y_{.j.}^{2} + \frac{1}{abn}Y_{...}^{2}) \end{split}$$ # | Subj | | | X_0 | X_1 | X_2 | X_3 | X_4 | X_5 | X_6 | X_7 | X_8 | X_9 | | | | |------|--------------|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------------------|-------------------------------|--| | 1 | β_{11} | ١. | (1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 ' | \ | $\langle \delta_{11} \rangle$ | | | 1 | β_{12} | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | | δ_{12} | | | 1 | β_{13} | | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | | δ_{13} | | | 2 | β_{21} | | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | | δ_{21} | | | 2 | β_{22} | | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | $/\alpha_0$ | δ_{22} | | | 2 | β_{23} | | 1 | 1 | -1 | -1 | -1 | -1 | 0 | 1 | 0 | 0 | α_1 | δ_{23} | | | 3 | β_{31} | | 1 | 1 | 1 | 0 | 1 | 0 | -1 | -1 | 0 | 0 | α_2 | δ_{31} | | | 3 | β_{32} | | 1 | 1 | 0 | 1 | 0 | 1 | -1 | -1 | 0 | 0 | α_3 | δ_{32} | | | 3 | β_{33} | _ | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | α_4 + | δ_{33} | | | 4 | β_{41} | _ | 1 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | 1 | 0 | α_5 | δ_{41} | | | 4 | β_{42} | | 1 | -1 | 0 | 1 | 0 | -1 | 0 | 0 | 1 | 0 | α_6 | δ_{42} | | | 4 | β_{43} | | 1 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 1 | 0 | α_7 | δ_{43} | | | 5 | β_{51} | | 1 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | 0 | 1 | α_8 | δ_{51} | | | 5 | β_{52} | | 1 | -1 | 0 | 1 | 0 | -1 | 0 | 0 | 0 | 1 | $\setminus \alpha_9$ | δ_{52} | | | 5 | β_{53} | | 1 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 1 | | δ_{53} | | | 6 | β_{61} | | 1 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | -1 | -1 | | δ_{61} | | | 6 | β_{62} | | 1 | -1 | 0 | 1 | 0 | -1 | 0 | 0 | -1 | -1 | | δ_{62} | | | 6 | β_{63} | ' | 1 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | -1 | -1 | / | $\left(\delta_{63}\right)$ | | | | | | | | | | | | | | | | | | | - o Challenging to properly code columns and specify weights for effect testing - Tedious formulations of statistics (common mistakes in implementations!) - Difficulty to generalize to handle any number of variables - Covariates cannot be modeled in the presence of within-subject factors - No way to correct for sphericity violation or unrealistic assumption (same variance-covariance structure) # ♦ Multivariate linear model (MVM) - Within-subject levels coded as columns - Each subject associated with one row, but not coded as a column in model matrix | Subj Pos Neg Neu Int Grp Age | Pos | Neg Neu | Subj | |---|--|---|------| | $\frac{1}{2}$ $\begin{pmatrix} \beta_{11} & \beta_{12} & \beta_{13} \\ \beta_{11} & \beta_{12} & \beta_{13} \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & -6 \\ 1 & 1 & 10 \end{pmatrix}$ Pos Neg | q Neu $\int_{\varsigma}^{\delta_{11}}$ | δ_{12} δ_{13} | 1 | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 021 | $\delta_{22} = \delta_{23} = \delta_{32} = \delta_{33}$ | 2 3 | | 4 β_{41} β_{42} β_{43} $=$ 1 -1 -4 α_{11} α_{12} | α_{13} δ_{41} | δ_{42} δ_{43} | 4 | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{pmatrix} \alpha_{23} \end{pmatrix}$ $\begin{pmatrix} \delta_{51} \\ \delta_{61} \end{pmatrix}$ | δ_{52} δ_{53} δ_{62} δ_{63} | 5 6 | # Implementation in AFNI: 3dMVM - o Program written in R [1] with package afex [2] for MVM - o Post-hoc tests performed through symbolic coding with labels in R package phia [3] - o Currently implemented as shell scripting with parallel computing capability through package snow [4] | | | | | | Turidado typo | |-------|-------------|--------------|------------|-------------|------------------------------| | 3dMVM | -prefix | OutputFile | -jobs 8 | -SC | | | | -bsVars | 'Grp*Age' | -wsVars | 'Cond' | -qVars 'Age' | | | -num_git 4 | | | | | | | -gltLabel 1 | Pat_Pos | -gltCode 1 | | 'Grp: 1*Pat Cond: 1*Pos' | | | -gltLabel 2 | Ctl_Pos-Neg | -gltCode 2 | 'Grp | : 1*Ctl Cond : 1*Pos -1*Neg' | | | -gltLabel 3 | GrpD_Pos-Neg | -gltCode 3 | 'Grp: 1*Ctl | -1*Pat Cond: 1*Pos -1*Neg' | | | -gltLabel 4 | Pat_Age | -gltCode 4 | | 'Grp : 1*Pat Age :' | | | -dataTabel | | | | * | | Subj | Grp | Age | Cond | InputFile | | | S1 | Ctl | 23 | Pos | S1_Pos.nii | | | S1 | Ctl | 23 | Neg | S1_Neg.nii | Post hoc tests | | S1 | Ctl | 23 | Neu | S1_Neu.nii | _ | | | | | | | | | S50 | Pat | 19 | Pos | S50_Pos.nii | | | S50 | Pat | 19 | Neg | S50_Neg.nii | Data layout | | S50 | Pat | 19 | Neu | S50_Neu.nii | Data layout | ### **Advantages of MVM** # - Easy formulation of testing statistics - No limit on the number of explanatory variables - Covariates modeled even in the presence of within-subject factors - Voxel-wise covariate (e.g., SFNR) allowed - Voxel-wise sphericity correction for univariate testing (UVT) - o Within-subject multivariate testing (MVT) as complementary testing - o MVT: HDR modeled with multiple basis functions #### The user only provides information - o Explanatory variable type: between- or within-subject - o Centering options for quantitative covariates o Post hoc tests through symbolic coding - Data table listing variables and input files - The user does not need to be involved in specifying - Dummy coding - o Regressors, - o Design matrix - o Post hoc tests through regressors # **Paper** PChen et al., Applications of Multivariate Modeling to Neuroimaging Group Analysis: A Comprehensive Alternative to Univariate General Linear Model, Neurolmage (In Press): 10.1016/j.neuroimage.2014.06.027 # **Acknowledgements** The research was supported by the NIMH & NINDS Intramural Research Programs of the NIH. ## References - [1] R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/. - [2] Henrik Singmann (2013). afex: Analysis of Factorial Experiments. R package version 0.4-57. - http://CRAN.R-project.org/package=afex [3] Helios De Rosario-Martinez (2012). phia: Post-Hoc Interaction Analysis. R package version 0.1-0. - [4] Luke Tierney, A. J. Rossini, Na Li and H. Sevcikova (2013). Snow: Simple Network of Workstations. R package version 0.3-12. http://CRAN.R-project.org/package=snow